Friday, January 24, 2020
Freuds Concept of the Uncanny Essay -- Freudian concept of the uncann
When a person experiences chills or goose bumps as a reaction to something strange or unusual, they are being affected by a sense of uncanniness. The psychoanalyst Sigmund Freud endeavored to explain this feeling of uncanniness in his essay entitled ââ¬Å"The Uncannyâ⬠. Freudââ¬â¢s theory focuses around two different causes for this reaction. Freud attributes the feeling of uncanniness to repressed infantile complexes that have been revived by some impression, or when primitive beliefs that have been surmounted seem once more to be confirmed. The first point of his theory that Freud discusses in the essay is the repression of infantile complexes that cause an uncanny experience. Freud uses E.T.A. Hoffmanââ¬â¢s short story, ââ¬Å"The Sandmanâ⬠, to explain the idea of repression of infantile complexes. The story centers around the character of the Sandman, who steals the eyes of children. Freud states that the fear that the character Nathaniel feels towards the Sandman has more to due with an infantile castration complex than with the actual fear of losing his eyes. In Freudââ¬â¢s theory he states that the ââ¬Å"Study of dreams, phantasies and myths has taught us that a morbid anxiety connected with the eyes and with going blind is often enough a substitute for the dread of castrationâ⬠(Freud 383). If Freudââ¬â¢s belief is true, than it is Nathanielââ¬â¢s fear of castration that causes him in the end to go mad and throw himself from parapet. Nathanielââ¬â¢s fear is embodied in the character of the Sandman, whom Freud says represents Nathanielââ¬â¢s father, and thus is the cause of his fear of castration. The Greek tragedy Oedipus Rex would also be affected by Freudââ¬â¢s theory. When examining Oed... ...s the knowledge of something in the recesses of our memory that is unattainable in any definite sense. Freud does indeed succeed in explaining two very important causes of uncanniness, and they are easily identified in literature and in society. Freud believes that uncanniness is a result of repressed infantile complexes and also the confirmation of primitive beliefs. Freudââ¬â¢s observations are important because they help us better understand our reactions and our fears, which in turn help us better understand ourselves. As long as people continue to gain some sort of pleasure from enduring this sense of uncanniness, writers and film makers will continue to use Freudââ¬â¢s methods to bring about the uncanny. Works Cited Freud, Sigumund. "The Uncanny." Literary Theory: An Anthology. Ed. by Julie Rivkin and Michael Ryan. New York: Blackwell, 1998.
Thursday, January 16, 2020
Concentration of Acid and Indigestion Tablet
Search by keyword: Sort By: Home Search Essays FAQs Tools Lost Essay? Contact Essay Color Key Free Essays Unrated Essays Better Essays Stronger Essays Powerful Essays Term Papers Research Papers Privacy Our Guarantee Popular Essays Excellent Essays Free Essays A-F Free Essays G-L Free Essays M-Q Free Essays R-Z Essay Topics Plagiarism Donate a Paper An Investigation to see How the Concentration of Hydrochloric acid affects the Rate of Reaction with Calcium CarbonateRate This Paper: 1 2 3 4 5 Length: 3036 words (8. 7 double-spaced pages) Rating: Red (FREE) ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â ââ¬â An Investigation to see How the Concentration of Hydrochloric acid affects the Rate of Reaction with Calcium Carbonate I am going to investigate how concentration of hydrochloric acid affects the rate of reaction between hydrochloric acid and indigestion tablets which contain mainly calcium carbonate.From my background knowledge from class work and books, (see references) I have found out that if you increase the concentration of hydrochloric acid, the rate of reaction will increase and the time of the reaction will decrease. The concentration is dependant on the proportions of hydrochloric acid and water in the solution. The stronger the hydrochloric acid is, the higher the concentration is. I know from my research that other things can affect the rate of reaction, for example:Temperature of acid- the higher the temperature of the acid is, the more energy the particles have to move around, therefore there are more collisions and so a faster rate of reaction. There is a certain amount of energy needed for the particles to react which is called the activation energy, so when the temperature of the solution is h igher, it gives more particles sufficient energy so they move faster to react when they collide more. Size of the particles- when the reactant is a solid then it can be broken down into smaller pieces or into a powder giving it different surface areas.The smaller the pieces, the bigger the surface area is and therefore there is more area for the acid to react with it, and so there is more chance of the particles colliding, so the rate of reaction will increase. Catalysts- this weakens the bonds in the reacting molecules so it seems to lower the activation energy for the reaction. This means that there can be many more successful collisions because particles will have more energy than the activation energy, and so the reaction will be faster. In order to keep my experiment fair, I must keep all the variables the same except concentration, which is what I am investigating.From my preliminarty experiments, I have found that a gas is let off in this reaction and having testing by puttin g it with lime water, I have concluded that the gas is carbon dioxide because the lime water turned cloudy. The equation is: Calcium Carbonate + Hydrochloric acid Calcium Chloride + water + carbon dioxide To find the rate of reaction, I will measure how long it takes to produce a certain amount of gas. To work out the rate of reaction, I have to divide the amount of gas I will collect with the time.Rate= amount of gas collected/ time In order to make this experiment fair, I will keep all the variables the same, except concentration. I will keep the mass of calcium carbonate the same by using one tablet each time. The masses of each tablet vary, but only by a tenth of a gram either side of 1. 01g, which I think is not a large enough difference in mass to make a difference to my experiment. I will try to do all my experiments on the same day, so the room temperature will be the same, which means the temperature of the acid will not change.I will use a burette to measure the amount of hydrochloric acid and water, so the volume of acid will be the same. I will keep the surface area the same because I will use the whole tablet and so each one will have the same surface area because they are all similar in size. Finally, I will use the same apparatus throughout my whole experiment to make it a fair test. I have done preliminary experiments in order to find the amounts I should use for the variables. I chose to collect 40cm? of gas, 50cm? of acid solution and use half a intigestion tablet and crush it.I found three problems with using this half a crushed tablet. The first problem was the fact that it did not react very strongly, and it did not collect more than 24cm? of gas with my lowest concentration of acid, secondly it was difficult to get exactly half a tablet, and this would take too long in my real experiment if I was to get exactly half a tablet each time. Lastly, I did not know when to start my stop clock, because the time delay from the first bits of calciu m carbonate falling into the acid, to the last bits of calcium carbonate falling was quite long and in between this, some gas was lost.This has made me decide to use a whole intigestion tablet, so I do not loose as much gas inbetween putting the tablet into the solution and putting the bung on the conical flask. GRAPH I decided that the lowest concentration I will use is 1M of hydrochloric acid. , which took 85 seconds to collect 40cm? of gas. This highest concentration I will use is 3. 8M of hydrochloric acid, which took 50 seconds to collect 40cm?. From my preliminary experiments I have decided to: Use one whole tablet, 50cm? of different acid concentrations and time how long it takes to collect 40cm? f carbon dioxide gas. My prediction is: The higher the concentration of hydrochloric acid, the quicker the reaction time is with the indigestion tablets. This is because I have found out that the reaction will be quicker as the concentration increases, because the higher the concentr ation is, the more particles of acid there are which are closer together to collide more with each other and therefore react with each other, and so the reaction will be quicker. This is called the collision theory.I will use a graph to show my results, and I know from previous knowledge that the graph should be directly proportional, which means as the concentration increases, so does the rate of reaction. If the concentration is doubled, the rate of reaction is doubled, because there is twice as much possibility for collisions because there are twice as much particles. The line of best fit should go through the origin because when there is no concentration of acid, there are no particles to react. I expect to get a graph which looks like the following:Equipment à · 1 burette containing hydrochloric acid à · 1 burette containing water à · 1 conical flask à · bung and deliver tube à · gas syringe à · stop clock à · clamp stand I am using burettes because they have an accuracy of 0. 1cm? which means I can measure the volumes of water and acid very accurately, and the range of the burette is 0-50cm? of liquid, which is enough for what I need. I will use a gas syring which is accurate to 1cm? of gas collected, and ranges from 0-100cm? of gas which is accurate enough if I am to collect 40cm? of gas.The stop clock is accurate to the 100th of a second, but I will round the time to the nearest second, because it is more realistic when remembering human reaction times, which is about 0. 1 seconds. In order to not let any gas escape, I will make sure I put the delivery tube and gas syring securely together. Method à · Set up apparatus as above à · Take 50cm? of the following concentrations at one time, using the burettes of acid and water-1M, 1. 4M, 1. 8M, 2. 2M, 2. 6M, 3. 0M, 3. 4M, 3. 8M. à · Put the acid solution into a conical flask à · Put 1 intigestion tablet into the the acid and put the bung on. Start the stop clock and time until the marker reaches 40cm?. à · Do this for all the concentrations. I will use a range of 2. 8M of hydrochloric acid, the lowest concentration is 1M and the highest is 3. 8M. I decided to use these concentrations, because in my preliminary experiments, I saw that the reaction was too slow with a concentration below 1M, and that the reaction would be too fast above 3. 8M. I have chosen to do 8 different concentrations, because I will not have enough time to do more, and I will still beable to draw a concusion even if I only use 8 different concentrations.I will have to use both 2M and 4M hydrochloric acid in order to make the different concentrations of acid. The ones which are 2M or below I will make with the 2M hydrochloric acid, and for the rest 4M hydrochloric acid. I will try to use as little of the 4M acid as possible, because it is more dangerous than the 2M. I will take as many repeat readings as I can in the time that I have, because repeats will help me to make sure I do not get any anomalous results. I will reapeat the anomalous results first. The more repeats I do, the more reliable my results will be.Safety I will use 2M and 4M hydrochloric acid which both have IRRITANT warnings so I will be careful using them and try not to get them on my hands or in my eyes. I will use goggles to protect my eyes. GRAPH Results This conclusion supports my prediction well because my results show that the higher the concentration, the quicker the reaction is because there are more particles to react with each other, and so there is more chance for them to collide and therefore the reaction is faster, which is what I originally assumed in my prediction.My graph shows it is directly proportional, because if I take the concentration of 1. 5M of hydrochloric acid, and find the rate of reaction using my graph, it shows that the rate of reaction is 0. 36 cm? /s, and using the graph if I double the concentration to 3M, the rate of reaction is 0. 72 cm? /s which is exactly two times faster tha n the reaction with 1. 5M which shows it is directly proportional. In the following table, I have calculated the average time and rate of reaction for all the different concentrations.I have then worked out the difference between each rate in order to find if there is a trend in how much quicker the reaction is which each concentration. GRAPH From this table, I can see there is a trend, because as the concentration goes up by 0. 4M each time, the rate goes up by 0. 07, 0. 08 or 0. 09 cm? /s which are very close to each other and shows that the rate is quite consistent because no matter what the concentration is, the rate goes up in a certain way on average of 0. 08 cm? /s. The only results that do not go with trend are the 3. M concentrations. On my graph I have circled them as anomalous results. There can be several explanations for this which I will cover in the evaluation. The following diagram is a simple way to help show why the rate of reaction increases with the concentration : My experiment has helped me with my conclusion that the rate of reaction increases as the concentration of the hydrochloric acid increases, and has given me evidence to help explain it. Evaluation My results are as realiable as I could make them using the apparatus and the time I had.From my results I can say that most of the results are quite reliable and accurate to what they should be because I got the results I expected. However, I did get two results which I would say are anomalous. I decided that these two results are anomalous because according to my background knowledge and the rest of my results, I knew that I should get a directly proportional line of best fit, and the rest of the results are very near to this line of best fit. I know that my line of best fit is correct because as the concentration doubles, the rate doubles.The results for the 3. 8M showed that the rate was slower than the rate of reaction with a lower concentration of 3. 4M. There are many different fac tors which may have affected my results. One of the biggest faults in my experiment was the fact that I did not have enough time to complete it in one day. Due to various problems, I had to do the experiment on three different days. This means that all the equipment was different which may mean that they work differently from eachother. This makes it an unfair test.The second problem with doing it on different days is the problem of room temperature which can have a big effect on the rate, because as I know from back ground knowledge, I know the warmer the acid is, the faster the reaction because particles have more energy so there are more successful collisions. I made the mistake of not recording which results are from which day, so I cannot tell if this had a major effect on the results. Whilst doing the experiment, I noticed a few problems which may also have effected my results.First of all is the problem that I only have two hands, so it was difficult to put the tablet in the conical flask, close the bung and also start the stop clock, all at the same time. When there was someone available, I asked them to start my stop clock, but this was not possible all the time. Adding this time to human reaction time of around 0. 1 of a second, some time could have been lost. Some gas was also lost in the time period between putting the tablet in and putting the bung on. I tried my best to make this time period very small, but still some gas was lost.When I had managed to get the tablet into the acid with the bung on and time it, I noticed that sometimes the whole tablet would not go into the acid, and so it was not all reacting, so in order for the whole tablet, I would shake it for a couple of seconds. I did not count how long I would do this for each one, but when I did shake it a lot of gas would be produced, so If I shook one flask for longer, more gas would be produced faster because the whole tablet would be reacting with the acid and there would be more coll isions and therefore a quicker reaction.Between each different concentration, I would wash the conical flask, and I observed that if I washed the flask with hot water, the flask would become hotter, or if I washed it with cold water the opposite would happen. This meant that the temperature of the acid and water solution would vary. This made the tests unfair because if I did some of them with hot conical flasks and others with cold ones, the ones with the warmer flasks would react faster because the temperature of the acid would increase and so give the particles more energy to react.If the equipment was much more sophisticated, for instance if all the equipment would stay the same temperature or if there was special clock which would start at the exact time the tablet touched the acid, my results would be much more accurate, but I still found good results. [IMAGE]If I could do the experiments again, I would do the following things differently in order for my results to be more acc urate.I would make sure I did them all on the same day, use all the same equipment, have someone to start the stopclock, have better equipment, for instance a conical flask with a divider so the acid and calcium carbonate won't mix until I want them to: Apart from all of the problems, my method was suitable and the experiment was successful because I had sufficient evidence to enable myself to come to a conclusion which agreed with my knowledge and prediction. I would have liked to share results with other people who were doing the same experiment as me to see if our results were similar, but nobody was doing the same experiment as me.The only results which I did not think are reliable or accurate is the reaction of the 3. 8M concentration of hydrochloric acid with the calcium carbonate, and if I had more time I would investigate this further. I would find out why these results were anomalous because even though I did reapeats, I still got anomalous results and so I would like to fi nd out why this happened. I would like to investigate the rate of reaction with more concentrations in order to see what happens after 3. 8M acid to see if it was still directly proportional or if the graph leveled off.Other extra investigations I would do would include using different types of acid for instance nitric acid or sulphuric acid and see if they changed the reaction at all. I would also try and use different types of indigestion tablets, because the ones I used contained ginger which I have researched about to find that it is used for digestion, soothing aches and pains in muscles and improves circulation problems, so I would like to investigate if this has a different effect on the rate of the reaction or not.I put an indigestion tablet into 1M of acid concentration and measured the temperature before and after the reaction for one minute to see if the reaction was exothermic or endothermic, but there was no change in temperature, so I would like to see what effect an e xothermic or endothermic reaction would have on the experiment. Overall I think my results are reliable because the repeats are all very close to eachother, the biggest gap between my repeats is the 1. M concentration which had a time difference of 6 seconds, but the others which I had time to repeat are all around 3 seconds apart. If I had more time I would do much more repeats to make my results more reliable. The accuracy of my results are quite good because they are all very close to the line of best fit. I would like to do more experiments and repeats to make sure my line of best fit is accurate and in the correct place. Apart from these I think my investigation was successful.
Tuesday, January 7, 2020
Frankie Muse Freeman Civil Rights Attorney
In 1964, at the height of the Civil Rights Movement, attorney Frankie Muse Freeman was appointed to the U.S. Commission on Civil Rights by Lyndon B. Johnson. Freeman, who had built a reputation as a lawyer unafraid to fight racial discrimination, was the first woman to be appointed to the commission. The Commission was a federal organization dedicated to investigating complaints of racial discrimination. For 15 years, Freeman served as part of this federal-fact finding agency that helped to establish the Civil Rights Act of 1964, the Voting Rights Act of 1965, and Fair Housing Act of 1968. Achievements First African-American woman to win a major civil rights case in 1954.The first woman to be appointed to the United States Commission on Civil Rights.Helped to develop the Citizensââ¬â¢ Commission on Civil Rights in 1982.Inducted into the National Bar Associationââ¬â¢s Hall of Fame in 1990.Inducted into the International Civil Rights Walk of Fame at the Martin Luther King, Jr. National Historic SiteAppointed as a member of the Presidential Scholars by President Barack Obama.Awarded the Spingarn Medal from the NAACP in 2011.Recipient of the Spirit of Excellence Award from the American Bar Association Commission on Racial and Ethnic Diversity in the Profession in 2014.Published the memoir, A Song of Faith and Hope.Recipient of honorary doctorate degrees from Hampton University, University of Missouri-St. Louis, St. Louis University, Washington University in St. Louis and Howard University. Early Life and Education Frankie Muse Freeman was born on November 24, 1916, in Danville, Va. Her father, à William Brown was one of three postal clerks in Virginia. Her mother, Maude Beatrice Smith Muse, was a housewife dedicated to civic leadership in the African-American community. Freeman attended the Westmoreland School and played piano throughout her childhood. Despite living a comfortable life, Freeman was aware of the impact that Jim Crow laws had on African-Americans in the South.à In 1932, Freeman began attending Hampton University (then Hampton Institute). In 1944, Freeman enrolled in Howard University Law School, graduating in 1947. Frankie Muse Freeman: Attorney 1948:à Freeman opens a private law practice after not being able to secure employment at several law firms. Muse handles divorces and criminal cases. She also takes so pro bono cases. 1950: Freeman begins her career as a civil rights attorney when she becomes legal counsel to the NAACPââ¬â¢s legal team in a lawsuit filed against the St. Louis Board of Education. 1954: Freeman serves as the lead attorney for the NAACP case Davis et al. v. the St. Louis Housing Authority. The ruling abolished legal racial discrimination in public housing in St. Louis. 1956: Relocating to St. Louis, Freeman becomes a staff attorney for the St. Louis Land Clearance and Housing Authorities. She holds this position until 1970. During her 14 year tenure, Freeman served as an associate general counsel and then general counsel of the St. Louis Housing Authority. 1964: Lyndon Johnson nominates Freeman to serve as a member of the United States Commission on Civil Rights. In September of 1964, the Senate approves her nomination. Freeman will be the first African-American woman to serve on the civil rights commission. She holds this position until 1979 after being reappointed by presidents Richard Nixon, Gerald Ford, and Jimmy Carter. 1979: Freeman is appointed as Inspector General for the Community Services Administration by Jimmy Carter. However, when Ronald Reagan was elected president in 1980, all Democratic inspector generals were asked to resign from their positions. 1980 to Present: Freeman returned to St. Louis and continued to practice law. For many years, she practiced with Montgomery Hollie Associates, LLC. 1982: Worked with 15 former federal officials to establish the Citizens Commission on Civil Rights. The purpose of the Citizens Commission on Civil Rights is to end racial discrimination in United Statesââ¬â¢ society. Civic Leader In addition to her work as an attorney, Freeman has served as a Trustee Emeritus of the Board of Trustees at Howard University; former Chairman of the Board of Directors of the National Council on Aging, Inc. and the National Urban League of St. Louis; Board member of the United Way of Greater St. Louis; the Metropolitan Zoological Park and Museum District; the St. Louis Center for International Relations. Personal Life Freeman married Shelby Freeman before attending Howard University. The couple had two children.
Subscribe to:
Posts (Atom)